
Pagination Reconsidered

Anne Brüggemann-Klein∗ Rolf Klein† Stefan Wohlfeil‡

Abstract

We present a new algorithm for pagination that minimizes the number of
page turns that are necessary while reading a formatted document. This ap-
proach keeps the total number of pages small and places figures close to their
citations. Examples show that the resulting documents are superior in quality
to what standard formatting systems achieve. Our algorithm is easy to imple-
ment and runs in time proportional to the number of text objects times the
number of floating objects.

1 Introduction

Whereas today’s formatting systems provide acceptable or even excellent line breaking
quality, the quality of their page breaking leaves much to be desired. The problem is
in positioning the floating objects such as figures, tables, and footnotes. Each of them
should appear closely after its citation; that is, the text object from which it is first
referred to. At the same time, underfull pages should be avoided. Since objects are
separated by white space whose size depends on their types, a text object followed
by another text object may not fill a page, whereas it does if followed by a floating
object of the same height. This further complicates the pagination task.

In word processing systems such as Microsoft Word, floating objects are not even
known. Framemaker [Fra95] knows them but does not guarantee that they appear
in their true order of citation. In Frame 5 for example a large figure cited within a
line in the middle of a page p is placed on the next page if it doesn’t fit. If two lines
later a smaller figure is cited that fits on page p it is placed there. LaTEX maintains
the correct order, but for positioning the floating objects a simple first-fit strategy is
employed. It places a floating object, once it has been cited, on the first page where
it fits.1

Professional designers and book production specialists are not satisfied with the
quality of documents formatted by first-fit algorithms. They feel—and rightly so—
that humans, laying out the pages manually, can achieve better-quality pagination
than anything an automated system provides them with so far.

∗Technische Universität München, Fachbereich Informatik, Arcisstr. 21, 80290 München,
brueggem@informatik.tu-muenchen.de

†FernUniversität Hagen, Praktische Informatik VI, Elberfelder Straße 95, 58084 Hagen,
rolf.klein@fernuni-hagen.de

‡FernUniversität Hagen, Praktische Informatik VI, Elberfelder Straße 95, 58084 Hagen,
stefan.wohlfeil@fernuni-hagen.de

1From now on we call all floating objects figures, for short.

1

2 1 INTRODUCTION

This situation calls for optimization algorithms. But expectations are dampened
by the theoretical results by Plass [Pla81]; he proved that optimal page breaking is
in general NP-hard, hence computationally intractable. It is conceivable that these
results have so far discouraged further effort towards better pagination algorithms.

However, a closer inspection of Plass’s work shows that one should not give up
so soon. The point is that the complexity of optimal page breaking depends on how
optimality is defined! The NP-hardness result holds for an objective function that
adds up the squares of the numbers of pages each figure is away from its citation. Is
this is a realistic optimization criterion? According to it, one would happily remove
six figures from the pages where they are cited, in order to decrease the page difference
of another figure from 4 to 3. We feel that such a change would rather deteriorate
the document.

On the other hand, if one uses the sum of the page distances themselves, instead of
their squares, the optimization problem becomes computationally tractable, as Plass
has also proved.

In principle, nothing is wrong with using the linear distance in pages between a
citation of a figure and the figure itself, as a measure of badness for the placement of
a single figure. But in order to obtain a suitable overall measure, two points must be
taken into account.

1. If minimizing the page differences is the only objective, documents are likely to
have many and loosely filled pages. In fact, if we only want to minimize the
page differences, it will often be preferable not to put another text block onto
the current page, if this text refers to a figure which does not also fit onto the
current page. This tends to produce lengthy documents.

2. When formatting a double-sided document, it is acceptable that a reference
appears on one page and the figure on the adjacent page. Such page differences
should not be counted.2

Both phenomena are taken care of if we use, as our objective function that is to
be minimized, the total number of page turns that are necessary while reading the
formatted document. This is either the total number of pages (minus 1) plus the sum
of all page differences caused by citations that do not appear on the same page as
their figure (for single-sided documents) or pDIV 2 plus the sum of all page differences
caused by citations that do not appear on the page spread as their figure (for double-
sided documents).

Sometimes the two goals—to minimize the total number of pages and the sum
of the page differences—are not equally important. For example, many conferences
threaten to reject submissions that exceed in length a certain number of pages. Or, for
an instruction booklet it can be crucial that the figures and the text explaining them
appear on the same page or on adjacent pages. Therefore we suggest to minimize the
weighted objective function

α · (sum of non-adjacent page differences) + β · (number of pages − 1),

2Here the style guides [Wil83][Chi82] make an exception from the rule that a figure must not
appear on a page previous to its citation.

3

where α, β ≥ 0. The weights α and β can be supplied by the user (perhaps within
some range specified by the designer). The default setting is α = β = 1.

The remainder of this paper is organized as follows. In Section 2 and Section 3
we state in more detail the input and the page model we are working with, and the
solution we suggest. Recently, our optimization algorithm has been implemented. In
Section 4 we describe the top level of the algorithm. The first practical results are
very encouraging. In Section 5 we compare the pagination of (part of) an official
document published by the government of Bavaria [EFI95] produced by LaTEX with
the layout our algorithm computes.

2 The input and the page model

The make-up or pagination step in book production assembles into pages several
separately prepared types of material, such as the main text in galley form, the figures,
the tables, and the footnotes. Pagination is notoriously difficult, since a number of
competing rules have to be satisfied simultaneously. The classical rules are:

1. Each page must be perfectly full; facing pages must be balanced.

2. Each figure and each table must be on the same page (or page spread) as its
citation.

3. Each footnote must start on the same page as its citation and must fall on
consecutive pages.

The pagination process gains some flexibility from white space (for example from
space between paragraphs or around headings and displays) that can within limits
stretch or shrink. Nevertheless, the three rules just mentioned are often impossible
to satisfy perfectly. Therefore, pagination procedures strive to satisfy them as well as
possible.

We start our investigation with a simple framework, considering just two input
streams for the pagination procedure, namely a text stream and a figure stream. The
text stream consists of alternating lines and spaces

t1, τ1, t2, τ2, . . . , τm−1, tm

and the figures stream consists of alternating figures and spaces

f1, φ1, f2, φ2, . . . , φn−1, fn

In particular, the lines (and the figures) are ordered according to their occurrence
in the text stream (the figure stream). Therefore, we say ti ≤ tj (fi ≤ fj) if ti (fi)
occurs earlier in the stream than tj (fj); that is, if i ≤ j.

For pagination, only the vertical extensions of lines, figures, and spaces are rele-
vant. We assume therefore, that each line and each figure x has a fixed height ht(x)
and that each white space x has a minimal height htMin(x) and a maximal height
htMax (x). This is similar to TEX’s glue model [Knu86]. Spaces also have an attribute
legalPageEnd that states, if a page may end in this space. Pages must end in spaces

4 2 THE INPUT AND THE PAGE MODEL

with this attribute set. This is used to prevent widows and orphans and to keep
headings on the same page with the beginning of the following paragraph.

Finally, we need to know in which piece of text each figure is cited. Therefore, a
reference function

R : {f1, . . . , fn} −→ {t1, . . . , tm}
is also part of the input. The reference function specifies, for each figure, the line which
contains the first citation of that figure. We admit only those reference functions for
which the figures appear in the same order as their citations; that is, if f ≤ f ′ then
R(f) ≤ R(f ′), for all figures f and f ′ in the figure stream.

Our page model is also very simple. First of all, we assume that all pages have
the maximal height htMax and the minimal height htMin. These two parameters are
part of the design specification for the document; they form input parameters for the
pagination routine. A design specification that sets htMin as strictly smaller than
htMax allows that pages are not completely full, but calls for a minimal degree of
fullness of

htMin

htMax
· 100%.

Finally, we assume that the group of figures and the group of lines of text that are
placed together onto a single page are divided by some white space, whose extension
is also part of the design specification. Therefore, we provide two further page param-
eters, sMin and sMax , for the minimal and the maximal extension of the separating
space.

A pagination assigns a page sequence number to each line and each figure, so it is
an onto mapping

P : {t1, . . . , tm} ∪ {f1, . . . , fn} −→ {1, . . . , p},

where p is the total number of pages used. Of course, a pagination P must satisfy
the following four basic constraints:

First, it must preserve the sequence of lines and figures; that is, if ti ≤ tj (fi ≤ fj),
then P (ti) ≤ P (tj) (P (fi) ≤ P (fj)).

Second, the amount of material that can be placed on any single page is limited
by the page parameters. The first constraint implies that for each page number q,
1 ≤ q ≤ p, there are unique sequences tk, . . . , tl of lines and fu, . . . , fv that get assigned
to page q by P . But page q must be neither overfull nor underfull, meaning that

l∑
i=k

ht(ti) +
l−1∑
i=k

htMin(τi) +
v∑

i=u

ht(fi) +
v−1∑
i=u

htMin(φi)
[
+ sMin

]
≤ htMax

and

l∑
i=k

ht(ti) +
l−1∑
i=k

htMax(τi) +
v∑

i=u

ht(fi) +
v−1∑
i=u

htMax(φi)
[
+ sMax

]
≥ htMin.

In these two equations, the bracketed terms sMin and sMax are only added if the
page has a mixed content of text and figures; that is, if l ≥ k and v ≥ u. The second
equation only has to hold if q < p; that is, the last page may be only partly full.

5

As can be seen from the two equations, in a pagination P , white space in the
text and figure streams contributes to a page only if it appears between two lines
or two figures who fall onto the same page; that is, white space disappears at page
boundaries.

Third, the white space that disappears at page boundaries has to be a legal page
end (i. e. τl.legalPageEnd = true).

The fourth condition on pagination states that no figure can be placed on an
earlier page than its citation. The exact statement depends on the nature of the
document, namely whether it is printed on single-sided or double-sided pages.

For a single-sided document, only the top face of the paper sheets is used, so that
the reader sees only one page at a time. For documents of this type, no figure may
be positioned on a page strictly prior to its citation; that is, only those paginations P
are admissible that satisfy

P (R(f)) ≤ P (f),

for each figure f .
For a double-sided document, both faces of the paper sheet are used for printing,

so that the reader sees a spread of two facing pages simultaneously, a left-hand,
even-numbered, verso page and a right-hand, odd-numbered, recto page. The spread
number S(p) can be calculated from the page number p by

S(p) = (pDIV 2) + 1,

so that the first spread consists of just the first page, the second spread consists of
the second and the third page, and so on.

In a double-sided setting, no figure may be positioned on a spread strictly prior
to its citation; that is, only those paginations P are admissible, that satisfy

S(P (R(f))) ≤ S(P (f)),

for each figure f .
To summarize: Our page model is described by five parameters, namely the mini-

mal and the maximal page height, the minimal and the maximal separation between
the figure and the text area, and the sidedness of the document. A design specifi-
cation for a document assigns values to these five parameters. A pagination routine
works with a text stream, a figure stream, and a design specification as its input. It
places lines and figures onto pages so that the inherent order of the two input streams
and the citation relation is respected, each page by itself conforms to the design spec-
ification, and no figure can be placed on an earlier page (or page spread) than its
citation.

3 Measuring paginations

Currently, automated pagination routines use a first-fit approach, placing a figure on
the next page after its citation that has room for it. This greedy strategy is in conflict
with the other goal of good pagination, to always fill each page according to the design
specification. Figure 1 shows a thumbnail sketch of a document ([EFI95], Chapter 3),
which was paginated according to the first-fit strategy. An arrow originates from the

6 3 MEASURING PAGINATIONS

citation of a figure and ends on the page where the figure is placed; text lines are
omitted. As can be seen from Figure 1, the quality of the first-fit pagination is rather
poor.

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20

Figure 1: LaTEX’s pagination L100

In consequence, page make-up specialists in book production rather resort to com-
pletely manual pagination than relying on first-fit automation. Figure 2 shows the
result of this time-consuming process as applied to our sample document. Hand tun-
ing in this case involved shrinking the two figures on pages 8 and 12 a bit so that
they fit onto the same page as their citations and forcing the figure on page 13 onto
an earlier page. Incidentally, this is how the document was actually printed. Our
goal is to improve the automated process to a degree that only occasionally manual
intervention is necessary.

Plass [Pla81] was the first to research optimizing approaches to the pagination
problem from an algorithmic point of view. His goal was to find paginations that place
figures as closely as possible to their citations. He has suggested two goal functions,
one linear and one quadratic, that measure paginations by the total number of pages
that lay between figures and their citations. In the notation of the previous section,
the linear goal function for single-sided documents is

Lin(P) =
n∑

i=1

(
P (fi) − P (R(fi))

)
,

and the quadratic goal function is

Quad(P) =
n∑

i=1

(
P (fi) − P (R(fi))

)2
.

The pagination problem can then be posed as an optimization problem, namely
to find a pagination P that minimizes a given goal function.

Plass argues that the quadratic goal function reflects better than the linear goal
function the intuitive notion of quality that a human reader has of a pagination. We

7

disagree, since the quadratic goal function overvalues small improvements of very bad
placements. Consider a pagination P1 that places 18 figures on the same page each
as their citations and 1 figure 10 pages behind its citation. If measured with the
quadratic goal function, this placement is considered worse than a pagination P2 that
places each of the 18 figures on the page after its citation and the last figure only
9 pages behind its citation:

Quad(P1) = 18 · 02 + 1 · 102 = 100,

Quad(P2) = 18 · 12 + 1 · 92 = 99.

However, we contend that a reader would rather have 18 figures ideally placed and
not care whether the page difference for the last figure can be lowered from 10 to 9.

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20

Figure 2: Hand-tuned pagination H100

Therefore, we are not overly concerned with the time complexity of finding an
optimal pagination with respect to the quadratic goal function. Plass has shown
that this problem is NP-complete, but he has used a different framework: In his
model, figure references may cross and figures may also be placed on pages before
their citations.

We propose a linear goal function that minimizes the number of page turns a
reader has to perform when reading the document from front to back. Furthermore,
we introduce weights α for thumbing from a figure citation to the figure and back and
β for the regular progression from page to page. Hence, our goal function is

Turn.S(α, β, P) =
n∑

i=1

α
(
P (fi) − P (R(fi))

)
+ β(p − 1).

Choosing α = 1 and β = 0, we get Plass’s original linear goal function. Choosing
α = 0 and β = 1, the prime concern is to produce as few pages as possible.

In the double-sided setting, we consider page spreads rather than single-sided
pages. Therefore, as a second goal function, we propose to minimize

Turn.D(α, β, P) =
n∑

i=1

α
(
S(P (fi)) − S(P (R(fi)))

)
+ β(S(p) − 1).

8 4 THE ALGORITHM

Our algorithm Turn.S-Optimizer depends on the values of the parameters α and
β as well as on the page specification (see Section 2), in particular on the page
fullness htMin/htMax . Among all paginations that satisfy the page specification,
our algorithm finds a pagination P that is optimal with respect to the goal func-
tion Turn.S(α, β, P).

We demonstrate in Section 5 with our sample document that paginations that are
optimized with respect to page turns are superior to the results of the first-fit strategy.
Even better results are achieved in the double-sided setting, optimizing spread turns
with our algorithm Turn.D-Optimizer.

4 The algorithm

The dynamic programming approach [CLR90] to pagination computes an optimal
pagination Pi,j for each subproblem t1, . . . , ti, f1, . . . , fj. The algorithm starts with
P0,0, a pagination that places nothing on zero pages. Pm,n is then an optimal pagina-
tion of the whole document.

We represent Pi,j as a record that contains at least three components: pagination-
Possible of type boolean, noOfPages of type integer and predecessor of type integer ×
integer.

funct ComputeOptimalPagination ≡
P 0,0 := (TRUE , 0,NIL × NIL);
for j := 0 to n do

for i := 0 to m do
if (i = 0) ∧ (j = 0) then next fi
Pi,j := (false ,−1, (NIL × NIL));
for a := 0 to i do

for b := 0 to j do
if FormsOnePage(a, b, i, j)

then Pi,j .paginationPossible := true ;
Pi,j .predecessor :=

BetterPredecessor(Pi,j.predecessor, (a × b));
Pi,j .noOfPages := P

Pi,j .predecessor .noOfPages + 1;

fi
od

od
od

od
end

To compute Pi,j the algorithm inspects all Pa,b with a ≤ i and b ≤ j (but (a, b) 6=
(i, j)!) and checks if ta+1, . . . , ti and fb+1, . . . , fj fit together onto one page. Of all
possible Pa,b that are valid predecessors of Pi,j , one that optimizes our goal function
is chosen and stored as predecessor of Pi,j.

Notice that this algorithm needs time O(m2n2). However the inner loops in Com-
puteOptimalPagination can be shortened, leading to the time complexity O(mn). This

9

is due to the fact that pages usually have constant height. Then there is a maximum
number of text lines and figures that fit onto one page.

FormsOnePage has to check if all the constraints are satisfied, that is

1. Pa,b is a valid pagination.

2. The heights of ta+1, . . . , ti and fb+1, . . . , fj together with sMin and sMax fill one
page according to the required minimum fill level.

3. The attribute legalPageEnd of τi is set.

4. No figure is placed before its reference (R(fj) ∈ {t1, . . . , ti}).

funct FormsOnePage(a, b, i, j) ≡
if (a = i) ∧ (b = j) then return false fi;
if ¬Pa,b.paginationPossible then return false fi;
if ¬τi.legalPageEnd then return false fi;
if R(fj) /∈ {t1, . . . , ti} then return false fi;
if (j − b) > 0 ∧ (i− a) > 0

then
hMin := sMin; hMax := sMax ;

else
hMin := 0; hMax := 0;

fi
hMin := hMin + TextSum (a, i) + MinTextSpaceSum(a, i);
hMin := hMin + FigureSum(b, j) + MinFigureSpaceSum(b, j);
hMax := hMax + TextSum(a, i) + MaxTextSpaceSum (a, i);
hMax := hMax + FigureSum(b, j) + MaxFigureSpaceSum(b, j);
if hMin > pageHeight then return false fi;
if hMax < pageHeight then return false fi;
return true ;

end

TextSum and FigureSum add up the heights of the text lines ta+1 . . . ti and the
figures fb+1 . . . , fj. MinTextSpaceSum adds up htMin of the spaces τa+1 . . . τi−1 in the
text stream. MaxFigureSpaceSum adds up htMax of the spaces φb+1 . . . φj−1. If figures
are allowed to appear not only on the top of a page but also on the bottom or in the
middle, only FormsOnePage has to be changed.

The function BetterPredecessor compares two pagination candidates Pi,j .predeces-
sor and Pa,b and returns one that gives rise to a better pagination for t1, . . . , ti and
f1, . . . , fj. To compare two candidates, we have to measure the quality of a pagination
Pi,j for t1, . . . , ti and f1, . . . , fj even if there are dangling references; that is, if some
figures fk, k > j, are referenced by text lines in {t1, . . . , ti}; that is, if R(fj+1) ≤ ti.
For such paginations, we have to generalize our goal function Turn.S. For a pagination
Pi,j that places t1, . . . , ti and f1, . . . , fj onto p pages, let

10 5 PRACTICAL RESULTS

Turn.S(α, β, Pi,j) =
j∑

l=1

α
(
Pi,j(fl) − Pi,j(R(fl))

)

+
n∑

k=j+1

R(fk)≤ti

α
(
p + 1 − Pi,j(R(fk))

)

+ β(p − 1);

that is, we pretend that all dangling figures fk, k > j, which are referenced by a text
line in {t1, . . . , ti}, are placed on page p + 1.

If Pa,b is the predecessor of Pi,j and α = β = 1, then

Turn.S(α, β, Pi,j) = Turn.S(α, β, Pa,b)

+ the number of dangling figures fk, k > j, R(fk) ≤ i

+ 1 (for the current page).

Hence, the value of an optimal pagination Pi,j equals the minimum value for all
possible predecessors Pa,b (a ≤ i, b ≤ j), plus the number of dangling references, plus
one (for the current page). This formula represents the optimality principle of the
dynamic programming approach.

To extend this algorithm to double-sided documents one has to allow dangling
figures on pages with an even page number. To compute the better predecessor only
those dangling references at odd-numbered pages are counted. It is even possible to
balance pages on a spread if the height interval of each page is stored. FormsOnePage
has to check, if the new page is odd numbered, that the height interval of the new
page is a match to the height interval of the previous page.

5 Practical Results

We have tested our implementation on Chapter 3 of a real-world document [EFI95],
which contains 18 figures. All page specifications used in the following examples have
the same maximal page height and the same minimal/maximal separation between
figures. First we consider paginations for page specifications that require a fill level
of 100%. We indicate the minimal fill level of a pagination by an index to its name,
for example P68 denotes a pagination P with all pages being at least 68% full.

LaTEX’s pagination L100 is shown in Figure 1. Only 3 figures are placed on the
same page as their citation, one figure is even 3 pages away from its citation, seven
figures are not on the same page spread as their citation. It took several hours to
hand tune the input, so that an acceptable pagination was achieved. Figure 2 shows
the result. Still, three figures couldn’t be placed on the same spread as their citation.
One of them is even on the page spread before its citation, although this is considered
bad style [Wil83][Chi82] and should be avoided. Measuring LaTEX’s pagination L100

with our goal functions (with α = β = 1) yields Turn.D(1, 1, L100) = 7+10 = 17 and
Turn.S(1, 1, L100) = 20+19 = 39. For the hand-tuned pagination H100 (see Figure 2)
we have Turn.D(1, 1, H100) = 3 + 10 = 13 and Turn.S(1, 1, H100) = 11 + 19 = 30.

Figure 3 shows the pagination D100 computed by our algorithm. It is optimal with
respect to our goal function Turn.D when pages have to be 100% full. We call this a

11

1
2 3

4 5
6 7

8 9
10 11

12 13
14 15

16 17
18 19

20

Figure 3: Turn.D(1, 1, ?100)-optimal pagination D100 with full double-sided pages

Turn.D(1, 1, ?100)-optimal pagination. Dotted arrows indicate a figure (at the end of
the arrow) that is placed on the same spread/page as its citation (beginning of the
arrow). Solid arrows indicate figures on different spreads than their citation.

Note that instead of 7 figures in LaTEX’s pagination here only 3 figures are placed
on a different spread as their citations. This is the same number of figures on dif-
ferent spreads as in the hand-tuned pagination. But the hand-tuned pagination has
placed one figure on page 13 while the citation is placed on page 14. As has already
been stated, this is considered bad style and should be avoided. In this case our
algorithm performs a little better than a human. Measured with our goal functions
Turn.D(1, 1, D100) = 3 + 10 = 13 and Turn.S(1, 1, D100) = 13 + 19 = 32.

It is still possible to improve the pagination even further, if pages need not be
100% full. The less full a page needs to be, the easier it is to place more figures on
the same page as their citations, and the more pages are usually needed. Figure 4

1
2 3

4 5
6 7

8 9
10 11

12 13
14 15

16 17
18 19

20

Figure 4: Turn.D(1, 1, ?90)-optimal pagination D90 with double-sided pages

shows that it is possible to place all figures on the same spread as their citation, if
pages need only to be 90% full. This is a Turn.D(1, 1, ?90)-optimal pagination with
Turn.D(1, 1, D90) = 0+10 = 10 (and Turn.S(1, 1, D90) = 6+19 = 25). Of course we
can’t guarantee such good results for all documents. Just think of a document that
only has three text lines that cite 20 large figures. But in such cases even human page
make-up specialists can’t find a good pagination.

12 5 PRACTICAL RESULTS

The following table summarizes the results of the LaTEX pagination, the hand
tuned pagination and the results of our algorithm.

pagination Turn.D Turn.S
LaTEX 7 + 10 = 17 20 + 19 = 39

hand-tuned 3 + 10 = 13 11 + 19 = 30
Turn.D(1, 1, ?100)-optimal 3 + 10 = 13 13 + 19 = 32
Turn.D(1, 1, ?90)-optimal 0 + 10 = 10 6 + 19 = 25

Next we look at the differences between the single-sided and the double-sided
mode. The profit the algorithm gets from using double-sided pages becomes clear
after a look at Figure 5. Here bold arrows indicate a figure not only on a different

1
2

3
4

5

6
7

8
9
10

11
12

13
14

15

16
17

18
19

20

Figure 5: Turn.S(1, 1, ?100)-optimal pagination S100

page but also on a different spread than its citation.
The optimal single-sided pagination S100 has two references from page 5 to page 6.

On double-sided documents this is a spread boundary, so it is preferable to have only
one reference from page 5 to page 6, as in D100 in Figure 3.

To get a single-sided pagination with all figures on the same page as their citation
often requires the pages to be very loosely filled. In our example we had to decrease the
minimum fill level to 70% to find such a pagination (see Figure 6). The result needed
23 pages instead of 20 pages with all pages exactly filled. But this pagination is also
optimal with Turn.S(1, 1, S70) = 0 + 23 = 23 (and Turn.D(1, 1, S70) = 0 + 12 = 12).

1
2

3
4

5

6
7

8
9
10

11
12

14
15

13

21
22

23

16
17

18
19

20

Figure 6: Turn.S(1, 1, ?70)-optimal pagination S70

The following table summarizes the results in double-sided and single-sided mode.

pagination Turn.D Turn.S
Turn.D(1, 1, ?100)-optimal 3 + 11 = 14 13 + 20 = 33
Turn.D(1, 1, ?90)-optimal 0 + 11 = 11 6 + 20 = 26
Turn.S(1, 1, ?100)-optimal 5 + 11 = 16 11 + 20 = 31
Turn.S(1, 1, ?70)-optimal 0 + 12 = 12 0 + 23 = 23

13

The example shows, that the optimal result for single-sided pages is not optimal, if
double-sided pages are available and vice versa.

16
17

18
19

20

1
2

3
4

5

6
7

8
9
10

11
12

14
15

13

21
22

23
24

25

Figure 7: Optimal linear pagination with min. 70% filled single-sided pages

The difference between our goal function Turn.S and the linear goal function Lin
is demonstrated by Figure 7, which shows a Lin-optimal pagination with a minimum
fill level of 70%. The algorithm that only aims to optimize Lin is at liberty to use 25
pages instead of the 23 that Turn.S-Optimizer uses for the same fill level of 70% and
for a perfect pagination that places each figure onto the same page as its reference.
Turn.S, by taking into account the number of pages, too, and hence differentiating
where Lin identifies, reflects better the user’s judgement on the merits and demerits
of a pagination than Lin does.

The implementation of our algorithm is written in C++, but it is a first prototype
that is neither optimized for speed nor storage. The time to compute the pagination
of our sample document was about one minute on a SUN Sparc 20.

6 Conclusions and further work

We have presented an algorithm and a goal function for the pagination of documents.
Our approach is better than the algorithms used in today’s formatters. It seems that
it is even better than a page make-up specialist doing pagination by hand. In order
to validate this assumption more documents need to be formatted with our approach.

Asher has implemented an optimizing pagination routine into the publishing sys-
tem Type & Set [Ash90]. His goal function, although not explicitly presented, seems
to be mainly concerned with page justification and balancing, and not so much with
figure placement. Our algorithm is capable also of handling the justification of pages
and the balancing of columns across a page or a page spread, as well as of freezing
parts of the previous pagination when reformatting after updates.

So far our implementation only deals with two input streams, namely text and
figures. But usually there are more floating objects than figures. In fact some of the
“figures” in our example document were tables. We restricted a table i, cited between
figures j and k to be placed between these figures. The style guides also allow the
table to be placed before or after these figures. It is only necessary to place all tables
in order of their citation and all figures in order of their citations. This may increase
the quality of the pagination. Our approach works with more input streams, but this
has not been implemented yet.

A special type of floating object is the footnote. Footnotes are cited in the text,
but unlike figures they must start on the same page as the citation. If the last footnote

14 REFERENCES

on a page doesn’t fit completely on the page, the footnote may be continued on the
next page. We plan to optimize pagination for documents with figures and footnotes
next.

We do not foresee that automated pagination routines, even when optimizing,
can turn out acceptable paginations for all documents. Difficult cases will always
require human intervention. Methods of interaction are needed that enable make-up
specialists to explicitly place figures on specific pages and in general to strengthen
or to relax constraints locally, for example constraints on the fill level of pages. Our
next goal is to provide support for manual interaction with pagination routines.

Our overall strategy is different from the one employed by Kernighan and Van Wyk
in their troff postprocessor PM [KW89]. Kernighan and Van Wyk strive to make
the pagination routine as simple and efficient as possible, using basically a first-fit
approach; they rely then on the author or typist to move figures around in the input
text when their placement needs improving. The strong point of this approach is that
the freezing of the pagination for as long a prefix of the document as has not changed,
is guaranteed. In contrast, with optimizing approaches, freezing up to a specific point
in the input has to be explicitly requested.

Our aim is to have the pagination routine automatically produce results that are
so good that the need for manual intervention is minimized.

Groves and Brailsford [GB93] base their first-fit pagination algorithm on the block
model of Kernighan and Van Wyk. The primary concern of their algorithm is the
balancing of pages and the avoidance of orphans and widows. Blocks that can be
broken across pages but have a minimal “need” are used to achieve the latter. In
our model, we set the legalPageEnd attributes of the first and the last-before-last
lines of a paragraph to false to achieve the same goal. Indeed, it seems both possible
and attractive to re-implement our optimizing algorithms for the block model as an
extension of Groves and Brailsford’s dlink system.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant BR 1309/2-1.

References

[Ash90] G. Asher. Type & Set: TEX as the engine of a friendly publishing sys-
tem. In M. Clark, editor, TEX: Applications, Uses, Methods, pages 91–100,
Chichester, UK, 1990. Ellis Horwood Publishers. Proceedings of the TEX88
Conference.

[Chi82] The Chicago manual of style. The University of Chicago Press, Chicago,
1982.

[CLR90] Thomas H. Corman, Charles E. Leierson, and Ronald L. Rivest. Introduction
to Algorithms. McGraw-Hill Book Company, 1990.

[EFI95] Wissenschaftliche Information im elektronischen Zeitalter. Stand und Er-
fordernisse. Bayerisches Staatsministerium für Unterricht, Kultus, Wis-
senschaft und Kunst, RB-05/95/14. Available on the WWW by the URL

REFERENCES 15

http://www11.informatik.tu-muenchen.de/EFI/, July 1995. Bericht der
Sachverständigenkommission zur elektronischen Fachinformation (EFI) an
den Hochschulen in Bayern.

[Fra95] Frame Technology Corporation, San Jose, California. FrameMaker User
Manual, 1995.

[GB93] Michael J. Groves and David F. Brailsford. Separate compilation of struc-
tured documents. Electronic Publishing—Origination, Dissemination, and
Design, 6(4):315–326, December 1993.

[Knu86] Donald E. Knuth. The TEXbook, volume A of Computer & Typesetting.
Addison Wesley Publishing Company, Reading, MA, 1986.

[KW89] B. W. Kernighan and Ch. J. Van Wyk. Page makeup by postprocessing
text formatter output. Computing Systems, 2(2):103–132, 1989.

[Pla81] M. F. Plass. Optimal pagination techniques for automatic typesetting sys-
tems. Technical Report STAN-CS-81-870, Department of Computer Science,
Stanford University, 1981.

[Wil83] H. Williamson. Methods of Book Design. Yale University Press, New Haven,
1983.

